python重点回顾(4)

Learning python 4

python教程重点回顾-3-IO编程、进程和线程

##IO编程 ###文件读写

  • 文件读取
try:
    f = open('/path/to/file', 'r')
    print f.read()
finally:
    if f:
        f.close()

#or

with open('/path/to/file', 'r') as f:
	for line in f.readlines():
    	print(line.strip()) # 把末尾的'\n'删掉
        
  • 文件编码
>>> f = open('/Users/michael/gbk.txt', 'rb')
>>> u = f.read().decode('gbk')
  • 写文件

    写文件和读文件是一样的,唯一区别是调用open()函数时,传入标识符'w'或者'wb'表示写文本文件或写二进制文件:

>>> f = open('/Users/michael/test.txt', 'w')
>>> f.write('Hello, world!')
>>> f.close()

###操作文件、目录

# 查看当前目录的绝对路径:
>>> os.path.abspath('.')
'/Users/michael'
# 在某个目录下创建一个新目录,
# 首先把新目录的完整路径表示出来:
>>> os.path.join('/Users/michael', 'testdir')
'/Users/michael/testdir'
# 然后创建一个目录:
>>> os.mkdir('/Users/michael/testdir')
# 删掉一个目录:
>>> os.rmdir('/Users/michael/testdir')

#通过os.path.split()函数,这样可以把一个路径拆分为两部分,后一部分总是最后级别的目录或文件名:
>>> os.path.split('/Users/michael/testdir/file.txt')
('/Users/michael/testdir', 'file.txt')

#os.path.splitext()可以直接让你得到文件扩展名
>>> os.path.splitext('/path/to/file.txt')
('/path/to/file', '.txt')

###序列化 Python提供两个模块来实现序列化:cPicklepickle。这两个模块功能是一样的,区别在于cPickle是C语言写的,速度快,pickle是纯Python写的,速度慢,跟cStringIOStringIO一个道理。用的时候,先尝试导入cPickle,如果失败,再导入pickle

try:
    import cPickle as pickle
except ImportError:
    import pickle


#序列化
>>> d = dict(name='Bob', age=20, score=88)
>>> pickle.dumps(d)
"(dp0\nS'age'\np1\nI20\nsS'score'\np2\nI88\nsS'name'\np3\nS'Bob'\np4\ns."

#反序列化
>>> f = open('dump.txt', 'wb')
>>> pickle.dump(d, f)
>>> f.close()
#or
>>> f = open('dump.txt', 'rb')
>>> d = pickle.load(f)
>>> f.close()
>>> d
{'age': 20, 'score': 88, 'name': 'Bob'}

使用json

#序列化
>>> import json
>>> d = dict(name='Bob', age=20, score=88)
>>> json.dumps(d)
'{"age": 20, "score": 88, "name": "Bob"}'

#反序列化
>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}'
>>> json.loads(json_str)
{u'age': 20, u'score': 88, u'name': u'Bob'}

##进程和线程

###多进程 Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。

子进程永远返回0,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID。

Python的os模块封装了常见的系统调用,其中就包括fork,可以在Python程序中轻松创建子进程:

# multiprocessing.py
import os

print 'Process (%s) start...' % os.getpid()
pid = os.fork()
if pid==0:
    print 'I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid())
else:
    print 'I (%s) just created a child process (%s).' % (os.getpid(), pid)

#结果
Process (876) start...
I (876) just created a child process (877).
I am child process (877) and my parent is 876. 

注:由于Windows没有fork调用,上面的代码在Windows上无法运行。

使用multiprocessing模块实现跨平台多进程编程

from multiprocessing import Process
import os

# 子进程要执行的代码
def run_proc(name):
    print 'Run child process %s (%s)...' % (name, os.getpid())

if __name__=='__main__':
    print 'Parent process %s.' % os.getpid()
    p = Process(target=run_proc, args=('test',))
    print 'Process will start.'
    p.start()
    p.join()
    print 'Process end.'

使用进程池

from multiprocessing import Pool
import os, time, random

def long_time_task(name):
    print 'Run task %s (%s)...' % (name, os.getpid())
    start = time.time()
    time.sleep(random.random() * 3)
    end = time.time()
    print 'Task %s runs %0.2f seconds.' % (name, (end - start))

if __name__=='__main__':
    print 'Parent process %s.' % os.getpid()
    p = Pool()
    for i in range(5):
        p.apply_async(long_time_task, args=(i,))
    print 'Waiting for all subprocesses done...'
    p.close()
    p.join()
    print 'All subprocesses done.'

对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。Pool的默认大小在我的电脑上是4,因此,最多同时执行4个进程。这是Pool有意设计的限制,并不是操作系统的限制。如果改成:p = Pool(5),Pool的默认大小是CPU的核数

进程间通信

from multiprocessing import Process, Queue
import os, time, random

# 写数据进程执行的代码:
def write(q):
    for value in ['A', 'B', 'C']:
        print 'Put %s to queue...' % value
        q.put(value)
        time.sleep(random.random())

# 读数据进程执行的代码:
def read(q):
    while True:
        value = q.get(True)
        print 'Get %s from queue.' % value

if __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()
    # 启动子进程pr,读取:
    pr.start()
    # 等待pw结束:
    pw.join()
    # pr进程里是死循环,无法等待其结束,只能强行终止:
    pr.terminate()

注:在Unix/Linux下,multiprocessing模块封装了fork()调用,使我们不需要关注fork()的细节。由于Windows没有fork调用,因此,multiprocessing需要“模拟”出fork的效果,父进程所有Python对象都必须通过pickle序列化再传到子进程去,所有,如果multiprocessing在Windows下调用失败了,要先考虑是不是pickle失败了。 ###多线程

Python的标准库提供了两个模块:thread是低级模块,threading是高级模块,对thread进行了封装。绝大多数情况下,我们只需要使用threading这个高级模块。

import time, threading

# 新线程执行的代码:
def loop():
    print 'thread %s is running...' % threading.current_thread().name
    n = 0
    while n < 5:
        n = n + 1
        print 'thread %s >>> %s' % (threading.current_thread().name, n)
        time.sleep(1)
    print 'thread %s ended.' % threading.current_thread().name

print 'thread %s is running...' % threading.current_thread().name
t = threading.Thread(target=loop, name='LoopThread')
t.start()
t.join()
print 'thread %s ended.' % threading.current_thread().name

定义锁

balance = 0
lock = threading.Lock()

def run_thread(n):
    for i in range(100000):
        # 先要获取锁:
        lock.acquire()
        try:
            # 放心地改吧:
            change_it(n)
        finally:
            # 改完了一定要释放锁:
            lock.release()

Python运行在多核CPU

启动与CPU核心数量相同的N个线程,在4核CPU上可以监控到CPU占用率仅有160%,也就是使用不到两核。

即使启动100个线程,使用率也就170%左右,仍然不到两核。

但是用C、C++或Java来改写相同的死循环,直接可以把全部核心跑满,4核就跑到400%,8核就跑到800%,为什么Python不行呢?

因为Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。

GIL是Python解释器设计的历史遗留问题,通常我们用的解释器是官方实现的CPython,要真正利用多核,除非重写一个不带GIL的解释器。

所以,在Python中,可以使用多线程,但不要指望能有效利用多核。如果一定要通过多线程利用多核,那只能通过C扩展来实现,不过这样就失去了Python简单易用的特点。

不过,也不用过于担心,Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响。 ###ThreadLocal 每个线程存储某对象的一个副本

import threading

# 创建全局ThreadLocal对象:
local_school = threading.local()

def process_student():
    print 'Hello, %s (in %s)' % (local_school.student, threading.current_thread().name)

def process_thread(name):
    # 绑定ThreadLocal的student:
    local_school.student = name
    process_student()

t1 = threading.Thread(target= process_thread, args=('Alice',), name='Thread-A')
t2 = threading.Thread(target= process_thread, args=('Bob',), name='Thread-B')
t1.start()
t2.start()
t1.join()
t2.join()

###进程vs线程

  • 线程切换

    无论是多进程还是多线程,只要数量一多,效率肯定上不去,为什么呢?

    我们打个比方,假设你不幸正在准备中考,每天晚上需要做语文、数学、英语、物理、化学这5科的作业,每项作业耗时1小时。

    如果你先花1小时做语文作业,做完了,再花1小时做数学作业,这样,依次全部做完,一共花5小时,这种方式称为单任务模型,或者批处理任务模型。

    假设你打算切换到多任务模型,可以先做1分钟语文,再切换到数学作业,做1分钟,再切换到英语,以此类推,只要切换速度足够快,这种方式就和单核CPU执行多任务是一样的了,以幼儿园小朋友的眼光来看,你就正在同时写5科作业。

    但是,切换作业是有代价的,比如从语文切到数学,要先收拾桌子上的语文书本、钢笔(这叫保存现场),然后,打开数学课本、找出圆规直尺(这叫准备新环境),才能开始做数学作业。操作系统在切换进程或者线程时也是一样的,它需要先保存当前执行的现场环境(CPU寄存器状态、内存页等),然后,把新任务的执行环境准备好(恢复上次的寄存器状态,切换内存页等),才能开始执行。这个切换过程虽然很快,但是也需要耗费时间。如果有几千个任务同时进行,操作系统可能就主要忙着切换任务,根本没有多少时间去执行任务了,这种情况最常见的就是硬盘狂响,点窗口无反应,系统处于假死状态。

    所以,多任务一旦多到一个限度,就会消耗掉系统所有的资源,结果效率急剧下降,所有任务都做不好。

  • 计算密集型 vs. IO密集型

    是否采用多任务的第二个考虑是任务的类型。我们可以把任务分为计算密集型和IO密集型。

    计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。

    计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。

    第二种任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。

    IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。

  • 异步IO

    考虑到CPU和IO之间巨大的速度差异,一个任务在执行的过程中大部分时间都在等待IO操作,单进程单线程模型会导致别的任务无法并行执行,因此,我们才需要多进程模型或者多线程模型来支持多任务并发执行。

    现代操作系统对IO操作已经做了巨大的改进,最大的特点就是支持异步IO。如果充分利用操作系统提供的异步IO支持,就可以用单进程单线程模型来执行多任务,这种全新的模型称为事件驱动模型,Nginx就是支持异步IO的Web服务器,它在单核CPU上采用单进程模型就可以高效地支持多任务。在多核CPU上,可以运行多个进程(数量与CPU核心数相同),充分利用多核CPU。由于系统总的进程数量十分有限,因此操作系统调度非常高效。用异步IO编程模型来实现多任务是一个主要的趋势。

###分布式进程 see more

参考:python教程